

Drs. Luke Bower, Joe Mruzek, and Brandon Peoples

Bio-assessment: using aquatic organisms to learn about river health

ASSESSMENT OF BIOTIC INTEGRITY USING FISH
COMMUNITIES
James R. Karr

ABSTRACT

 suppocting tiem.

WHY MONITOR FISH?
Biological communites reflet watershed conditions since they
 Many groups of orgatisms have been proposed as indyatorss oh
environmental quality but no single group has emerged as the

Flow-ecology relationships

Use of the relationships

\square Piedmont

Purpose

- To provide insight on the potential response of organisms to the alternate water withdrawal scenarios produced by SWAM.
- We aim to put the SWAM results into a biological context.
- High demand water use scenario: 100 to 60 cfs

How will this work? Step 1

Species richness

Legend

- Fish sites
- Macroinvertebrate sites

HUC6

variable — USGS - WaterFALL

How will this work? Step 2

How will this work? Step 3

Selected relationships

Step 1: Quantify the flow-ecology relationships

Contents lists available at ScienceDirect
Science of the Total Environment

Quantifying flow-ecology relationships across flow regime class and ecoregions in South Carolina

Framework

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010

Build a hydrologic foundation of streamflow and biological data
B. Classify natural river types
C. Model and select flow ecology relationships
\square Blue Ridge
Southern Coastal Plain
Southeastern Plain
Middle Atlantic Coastal Plain
\square Piedmont

Biological Data:

- 492 Fish sites (streams \& rivers)
- DNR
- 8 biological response metrics
- 530 aquatic insect sites
- DHEC
- 6 biological response metrics

Characterizing aquatic diversity

- Species richness: number of species
- Shannon's Diversity: Accounts for percentages Tolerant

Diverse biota = healthy ecosystem

Hydrologic data

Build a hydrologic foundation of streamflow data

I N T ER N A T I O N A L

Table 2. Model Geospatial Inputs

Data Set	Name	Resolution	Reference
Hydrology	Enhanced National Hydrography	$2.1 \mathrm{~km}^{2}$ within study area	Moore and Dewald, Dataset Version 2
Land Cover	2016 National Land Cover Dataset	$30-\mathrm{m}$ grid	Jin et al., 2019
Climate	PRISM 4km Daily Temperature and Precipitation 1988-2018	$4-\mathrm{km}$ grid	PRISM Climate Group, 2019
Soils	Soil Survey Geographic Database (SSURGO)	$1: 12,000$ to	USDA-NRCS, 2014
Subsurface	National Weather Service (NWS) for applications of the Sacramento	Approximatel Parameters	Zhang et al., 2011
	Soil Moisture Accounting Model (SAC-SMA)		

- WaterFALL model:
- rainfall-runoff model 30-year period
- Accounts for withdrawals, discharges, and reservoirs within the river network
- 24 hydrologic metrics
- Flow regime: Timing, magnitude, frequency, rate of change, and duration

Predictability of flow metrics calculated using a distributed hydrologic model across ecoregions and stream classes: Implications for developing flow-ecology relationships
 Brandon K. Peoples ${ }^{3}$ ©

Relevance of flow regime components

Flow regime components: magnitude, frequency, duration, timing, and rate
Edisto River NR Givhans, SC - 02175000
June 16, 2022 - June 16, 2023
Streamflow, $\mathrm{ft}^{3} / \mathrm{s}$ ©
$2110 \mathrm{ft} 3 / \mathrm{s}$ - Sep 14, 2022 09:30:00 PM EDT

Relevance of flow regime components

Broad River at Alston, SC - 02161000

June 16, 2022 - June 16, 2023
Streamflow, $\mathrm{ft}^{3} / \mathrm{s}$ i

Edisto River NR Givhans, SC - 02175000
May 17, 2023 - June 16, 2023
Streamflow, $\mathrm{ft}^{3} / \mathrm{s}$ ©

Reedy River Near Greenville, SC - 02164000

June 9, 2023 - June 16, 2023
Streamflow, $\mathrm{ft}^{3} / \mathrm{s}$ ©

Relevance of flow regime components

- Magnitude: MA1 (mean daily flow) and ML17 (base flow)
- Alteration of habitat
- Reduced water quality and higher mortality

- Duration: DL16 (duration of lov
- Alteration of connectivity
- Increased duration of low water c
- Timing: TL1 (timing of low flow
- Loss of access to habitats
- Disruption of life-cycle cues (spa migration) and decreases in recr
- Invasion of exotics

Framework

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
A. Build a hydrologic foundation of streamflow and biological data
C. Model and select flow ecology relationships

2. Classify natural river types

A. Flow-ecology relationships may differ among stream classes
A. Ecoregion
B. Hydrologic class

Framework

- The ecological limits of hydrologic alteration (ELOHA). Poff et al., 2010
A. Build a hydrologic foundation of streamflow and biological data
B. Classify natural river types

Model and select flow ecology relationships

Identify relationships: some are informative

24 Flow metrics 14 Biotic metrics

Identify relationships: some are not informative

Identify relationships: remove uninformative relationships

Results summary

- We found >180 informative relationships across SC
- Predicting responses
- Defining biological response limits
- Many of these differed among stream classes

Scenario	Loss of species	Risk
MD	15%	Med
HD	25%	High

- All components of the flow regime were important to aquatic organisms
- magnitude, frequency, duration, timing, and rate
- Next steps:
- Identify those relevant to the Saluda

- Present these proposed relationships to the RBC

How will this work? Step 1

Hydrologic data

How will this work? Step 2

How will this work? Step 3

Selected relationships

